

Sympa, mailing-lists software

March 2002

Serge Aumont & Olivier Salaün

CRU

Vincent Mathieu
University of Nancy 2

Translation : Mathieu Jan (INSA Rennes)

Sympa is an outcome of our investments to meet the needs of a national service for French
universities in the field of mailing-lists. This activity started in 1992 to prepare the migration
of the bitnet lists. Today, Sympa is a product under the GPL license whose developments
continue under the control of the CRU and with many contributions from the users
community. More than 3000 sites of any origins load regularly new versions of SYMPA ,
which in French stands for SYstème de Multi-Postage Automatique (SYMPA).

It would be useless to rewrite the reference handbook of Sympa, but setting up Sympa is often
considered to be complex by list masters. It is of course due to its great number of
functionalities. The goal of this course is to help you to use all the devices of Sympa aiming
to simplify its administration while offering improved services.

This course was given in March 2002, it is based on version 3.3.4 of Sympa.

1 Overview of Sympa functionalities ... 5

1.1 Services to users.. 5

1.2 Services to owners and moderators of lists .. 5

1.3 Services to list masters ... 6

1.4 Other features of Sympa.. 6

2 Overview of Sympa organization .. 6

3 Data organization.. 7

3.1 Database structure ... 7

3.2 File structure... 7

4 The web repository... 8

4.1 Functionalities... 8

4.2 Definition and heritage of privileges... 9

5 Subscription options .. 9

6 Antivirus... 9

7 Processing of bounces (non-delivery reports) .. 10

7.1 Analysis of bounces, bounced.pl.. 10

7.2 The bounces management interface ... 11

7.3 Expiration of bounces .. 12

7.4 Projects of development... 12

8 The task manager .. 12

9 Virtual robots... 13

9.1 Internal organization of virtual robots... 13

9.2 Creating a virtual robot... 13
9.2.1 DNS.. 13
9.2.2 Configure your SMTP engine .. 14
9.2.3 Creating aliases .. 14
9.2.4 Apache.. 14
9.2.5 robot.conf ... 14
9.2.6 The working directory.. 15
9.2.7 Restart Apache, Sendmail and Sympa’s daemon... 15
9.2.8 Other configuration .. 15

10 Writing your own scenarios .. 16

10.1 Principle of scenario operations.. 16
10.1.1 Available conditions in a scenario : ... 17
10.1.2 Available variables in a scenario :.. 17

11 Templates ... 18

11.1 Organization ... 18

 2

11.2 Format ... 19
11.2.1 Variables... 19
11.2.2 Conditions .. 19
11.2.3 Loops.. 19
11.2.4 Enclosing of files.. 20
11.2.5 Escapement... 20

11.3 List of templates ... 20

11.4 Examples ... 21

12 LDAP support in SYMPA ... 21

12.1 Short introduction to LDAP.. 22
12.1.1 Structure of an LDAP base.. 22
12.1.2 Composition of an LDAP object .. 22
12.1.3 LDAP groups.. 23
12.1.4 Level of protocol .. 23
12.1.5 Accentuated characters... 23
12.1.6 Exchange format .. 23
12.1.7 Access rights .. 23
12.1.8 Unfolding of LDAP request ... 23
12.1.9 LDAP search filters.. 24
12.1.10 Replicates ... 24
12.1.11 Usual configuration of an LDAP client... 24
12.1.12 Example of LDAP objects.. 25

12.2 Prerequisite for LDAP support in Sympa.. 25

12.3 Use of LDAP for authentication in wwsympa ... 25
12.3.1 Authentication in wwsympa... 25
12.3.2 Authentication with LDAP... 25
12.3.3 wwsympa behavior with an LDAP authentication... 27

12.4 Lists issued from LDAP requests.. 27
12.4.1 Lists of type ‘ldap_query’ .. 27
12.4.2 Lists of type ‘ldap_2level_query’ .. 28
12.4.3 Include list and Sympa’s cache .. 29
12.4.4 ttl and cache of lists.. 29

12.5 Use of ‘LDAP filters’ in scenarios... 29
12.5.1 Named Filters (NF) .. 29
12.5.2 Use of Named Filters (NF) in a scenario.. 29

Here, every subscriber of list ‘listname’ and the teacher of ‘lettres’ campus have the
right to send an e-mail to the list ‘listname’. .. 30

12.5.3 Scope of these filters .. 30

12.6 Conclusion on Sympa and LDAP ... 30

13 MySQL configuration ... 30

13.1 Setting up Perl modules ... 30

13.2 Create the database.. 31

13.3 Configuration of sympa.conf... 32

13.4 Access tools to the database... 32

 3

13.4.1 mysql .. 32
13.4.2 phpMyAdmin ... 32

14 Optimizations / and load balancing .. 32

14.1 Optimization of the distribution ... 33

14.2 Optimization with Sendmail.. 34
14.2.1 Non canonification of addresses .. 34
14.2.2 Pull down timers... 35

14.3 MySQL optimization.. 35
14.3.1 Structure of the base... 35
14.3.2 Configuration of the server .. 36

14.4 Load balancing ... 36

15 Setup of Sympa .. 37

16 Integrating Sympa with other software .. 37

16.1 Share the web authentication .. 37
16.1.1 Use the authentication system of Sympa.. 37
16.1.2 Sympa recognizes your authentication... 37

16.2 Data share ... 37
16.2.1 Definition of lists by extraction from a database ... 38
16.2.2 Add your data to Sympa’s base.. 38

17 S/MIME et HTTPS.. 38

17.1 HTTPS... 39

17.2 S/MIME... 39
17.2.1 Validation of S/MIME signature.. 39
17.2.2 Encrypted messages Distribution ... 40

18 Available ressources .. 40

 4

1 Overview of Sympa functionalities

The point is not to enumerate all the specificities of this mailing-lists server, at most we can
give an outline of its original points.
One of the characteristics of Sympa is to offer two integrated interface (e-mail and web). The
web interface is unique and delivers to each one a personalized sight of the lists service. Thus,
users, owners of lists and list master(s) use the same interface.

1.1 Services to users

Sympa proposes to mailing-lists users all the panoply of casual services in this field :
subscription, subscription withdrawal, subscription options to receive messages under various
formats, indexed archives, presented by date or by thread, web space enabling deposit of
documents reserved to list subscribers , and so on.
It should be stressed that the service is accessible by two interfaces :

• The e-mail interface which recognizes the command sets of most used robots and
adapts without difficulties to messages formatted with all the MIME possibilities (e-
mail recognition of commands placed in multipart/alternative messages) ;

• The web interface, presented under the shape of a mailing-lists gateway of the site. It
proposes to each one a personalized view of the mailing-lists service as soon as the
person identifies herself through a device of passwords assignement/re-assignement.
The user can then see the whole sets of his subscriptions, manage his preferences
(choice of a language for interface for example), remove his message from archives
and so on.

Each subscriber can choose for each list, subscription options like receiving periodic and
grouped articles, replacement in messages of attachments by URLs, exclusive reception of
ASCII text version or HTML version when both are contained in a message.

1.2 Services to owners and moderators of lists

Sympa distinguishes moderators (who authorize or refuse broadcasting messages in the lists)
from owners (who configure the list and manage the subscriptions). Authenticated by his
password, the list owner has on the web interface a specific view of his lists. For each one he
can :

• Write service messages (welcome message, subscription recall, withdrawal message
…) and the list greeting page ;

• Access and set parameters of his list (those the list master has made editable) in
particular define the people authorized to subscribe to his list, to distribute message
and son on ;

• Validate or refuse (by e-mail or web) the subscription requests and the messages, both
subjected to validation ;

 5

1.3 Services to list masters

One or more list masters are defined for each lists robot (Sympa enables to manage several
lists robot relating to different internet domains). The list master validates list creation
requests on the web interface when they are subjected to authorization. He sets up the default
behaviors of Sympa as well as the service messages nonspecific to a list. He amongst other
things, defines the people authorized to create mailing lists and so on.

1.4 Other features of Sympa

The privileges management system called scenario allows to define the operation according
to all the elements of the context (user categories, presence of enclosures in the message, use
from a computer inside a local network and so on). Moreover, Sympa integrates an
authentication system by password; which can be common to other softwares in particular by
using LDAP authentication.

Sympa authorizes two definition modes of the subscriber lists population : classical lists built
by subscription/withdrawal and dynamic lists directly extracted from an LDAP directory or
from database servers.

In the field of X509 certificates, Sympa can recognize S/MIME signature but also encrypt
messages to subscriber. HTTPS authentication is also possible on the web interface.
Note that all the broadcasted messages are treated by antivirus.

2 Overview of Sympa organization

A quick watch on the whole organization of Sympa is needed to understand how it works and
to see the panel of possibilities.

mysql

sendmaisendmaisendmail

task_manager.p

archived.p

bounced.pl

sympa.pl

Apache +fastcgi
wwsympa.fcgi

Virus scanner

Openslssllll smime

 6

• sympa.pl : it’s the main daemon, it receives and diffuses messages via sendmail
(postfix, qmail or exim). It consults and modifies the subscriber lists in the database. It
feeds archived.pl after the diffusion of a message. It calls an external antivirus for all
the messages to be relayed towards a moderator or distributed ;

• wwsympa.fcgi receives requests from HTTP server (Apache or Roxen). Thanks to the
module fastcgi, this CGI is resident : it preserves all the initializations done in
memory. In particular, it maintains its connection with the SQL server as well as a
memory image of list objects. wwsympa.fcgi makese updates in the database. It
delegates the messages diffusion to Sympa via a spool ;

• bounced.pl is the daemon in charge of processing the non-delivery reports, received
from a SMTP engine and then it updates the database ;

• archived.pl is the daemon in charge of archiving. It treats messages of the
« outgoing » spool and converts them into HTML template used by wwsympa.fcgi ;

• task_manager.pl : currently this daemon is only used to transmit subscriptions recall
messages and to remove the non-significant bounces. Many tasks will be reserved to it
in new version.

3 Data organization

The data model of Sympa is composed of :
• The Sympa database ;
• A set of files ;
• Databases (LDAP or SQL) for constituting dynamic lists, according to the configuration

of external data sources ;
• LDAP directories for authentication.
Do not confuse the Sympa database (in general MySQL) and the external databases of Sympa
used for includes. In the second case, Sympa only read these external data.

3.1 Database structure

Although, for « historical » reasons, the setting up of a RDBMS for the management of
subscriber tables is still mentioned as optional, it is imperative to set up a database if the web
interface is installed. Indeed, only the database ensures the management of writing conflicts
between the fastcgi processes and the various daemons. Therefore, the RDBMS is not only a
way to improve performances of the software. Several RDBMS are supported : MySQL,
Postgresql, Sybase and Oracle. The access mode to the base is configured in the file
sympa.conf. The base consists of two tables :

1. the table user_table which enables to store information about users (e-mail, password
and preferred language) ;

2. the table subscriber_table : information about subscriptions.

3.2 File structure

Refer to section « organization » of the reference handbook of Sympa :
http://listes.cru.fr/sympa/doc/sympa/node3.html#SECTION00310000000000000000 and to
the examples of this document. We can distinguishe 3 kind of files :

• sympa.conf and wwsympa.conf : the global configuration of the software ;

 7

http://listes.cru.fr/sympa/doc/sympa/node3.html

• Configuration files of the virtual robot : robot.conf, edit_list.conf, templates,
scenario…

• Files relating to a list : config, stats, archives, bounces,
• Spools.

4 The web repository

A web repository for files is available for each list ; it is accessible from the web page of the
list. The ambitions of this documentary space are modest, the idea wasn’t to propose a
management tool of web site (see Rearsite) but only a space to trade documents and
bookmarks among subscribers of the list.

4.1 Functionalities

The main functionality is to upload files. It is also possible to edit, rename, and remove
uploaded files. A description can be associated to each file. The web repository also allows
folders and bookmarks (URLs) management.

By default, the web repository of a list is idle ; activation is made by the list owner, via the
web administration interface.

 8

http://listes.cru.fr/rs/fd/

It is possible to deposit a file index.html in a folder, it will replace the index file while
reading the folder.

Reading access to documents in the web repository is completely controlled by WWSympa
which uses its authentication system (internal or LDAP) to identify the client.

4.2 Definition and heritage of privileges

The web repository allows to define 3 types of privileges for each element :
• Reading : access right to a document, a folder ;
• Edition : right to edit and rename/remove a file. Also defines the right to deposit in a

folder ;
• Control : allows to define rights in reading/editing of an element of the web

repository. This privilege also allows to change the owner of a file/folder.

Each new entry (file / folder / bookmark) inherits the privileges of the folder to which it
belongs. The privileges associated with the root folder are defined by the list parameter
shared_doc (scenarized), except for the control privilege, assimilated as the right to edit
the parameter shared_doc (by default restricted to the list owner).

Extract of list configuration :

shared_doc
 d_read public
 d_edit private

The privileges on a file depend of course on its attributes, but also on those of its ascent ; it
allows to keep control on a hierarchy of the deposit space. For instance, for the file whose
absolute path is D1/D2/F1, the privileges follow the next diagram :

• reading and editing : priv(F1) = priv(D1) AND priv(D2) AND priv(F1) ;
• control : priv(F1) = priv(D1) OR priv(D2) OR priv(F1)

5 Subscription options

The configuration of each list allows to define the available options for messages reception
(parameter available_user_options) and the default subscription option (parameter
default_user_options). Each subscriber can thus choose a subscription option. Let’s quote the
options :

• nomail : no useful reception in order to suspend the messages reception while
keeping the privileges of a subscriber ;

• digest : grouped and periodic reception of messages (Sympa uses the MIME
multipart/digest format, the periodicity can be changed) ;

• summary : idem digest but reception limited to the messages list ;
• urlize : messages are delivered normally but attachments are replaced by links ;
• text and html : allows to specify the preferred version, when the distributed

message contains the two forms (multipart/alternative).

6 Antivirus

 9

Sympa is designed to use the services of antivirus to analyze incoming messages ; the
following antiviruses are recognized :

• uvscan (McAfee)
• fsav (Fsecure)
• sophos
• AVP
• viruswall (Trend Micro)

You need to set antivirus_path and antivirus_args parameters in sympa.conf
to activate the viruses detection (in the incoming messages) in sympa.pl. Contaminated
messages are put apart (bad/ subdirectory) and the author of the message is warned (see the
template your_infected_msg.tpl).

Viruses found in one week at the CRU (uvscan use) :

W32/Magistr.b@MM 51
W32/SirCam@MM 37
W32/Hybris.gen@MM 15
W32/Klez.e@MM 8
VBS/Tam@M 6
W32/BadTrans@MM 4
W32/Magistr.b.dam1 4
W32/Gibe@MM 3
W32/Nimda.gen@MM 1

TOTAL 129

The Sympa server of the CRU intercepts more than 100 contaminated messages a week.

7 Processing of bounces (non-delivery reports)

Casually, the non-delivery reports for distributed messages are transmitted to list owners.
Their mailbox is then flooded with these non human-readable reports. To avoid this problem,
Sympa treats bounces automatically, leaving (by now) the final operation of withdrawal to list
owners.

7.1 Analysis of bounces, bounced.pl

Bounces are received at the address mylist-owner then stored in a spool by the program
bouncequeue.

Example of alias :

mylist-owner: "|/home/sympa/bin/bouncequeue mylist"

The bounced.pl daemon treats the non-delivery reports in the spool in order to find out the
email address of the concerned subscriber and the error type. The bounce_subscriber
field (table subscriber_table) is updated ; the last non-delivery report of the subscriber
is archived (archive folder defined by the bounce_path parameter in wwsympa.conf).

The bounce_subscriber field (subscriber_table table) :

 10

mailto:W32/BadTrans@MM

1014647647 1016081883 97 5.2.2

 1014647647 : date of the first error (25 February 2002)
 1016081883 : date of the last error (14 March 2002)
 97 : number of bounces received
 5.2.2 : error type (defined by the RFC 1891)
 5 => permanent error
 2.2 => mailbox full

If the rate of “bouncing” subscribers in a list exceeds a certain level (defined by the parameter
bounce_warn_rate), the owner will receive an alarm for each message sent in the list. This
message is currently defined in the NLS (8,28).

7.2 The bounces management interface

The web interface in charge of the administration of a list allows to manage “bouncing”
subscribers. The list of “bouncing” email addresses allows to monitor the frequency of errors
and their type. The list owner can then choose to cancel errors or unsubscribe the address. The
subscriber will then receive a withdrawal message defined in the bye.tpl template (except
if the box « without preventing » is checked).

Web bounces management interface

 11

7.3 Expiration of bounces

When an email address no longer generates an error, the received errors must be forgotten by
the system. This task is entrusted to the Sympa task_manager, via the expire_bounce
parameter of sympa.conf. The default scenario (and the only one currently) expires bounces of
subscribers who no longer generate bounces(ten days after the last diffusion in the list).

The task expire_bounce.daily :

title.fr expiration de bounces 10 jours antérieurs au dernier mail diffusé
title.us expire of bounces older than 10 days before message distribution

/ACTION
expire_bounce (10)
next ([execution_date] + 1d, ACTION)

7.4 Projects of development

Since release 3.3.3, Sympa carries out a correlation between bounces and distribution of
messages (via the msg_count file). This piece of information should enable, in future
releases, to automate a certain amount of withdrawal. However, in some cases the decision
will remain to the list owner.

8 The task manager

Sympa needs to do planned operations ; it uses the task manager for some of these operations.
The task manager is to Sympa what crontab is to unix. The task_manager.pl daemon
plans tasks on the basis of some list parameters (expire_task, remind_task) and from global
parameters (crl_update, expire_bounce). Tasks can be complex, the daemon stores each task
in a spool.

Eventually, some repetitive operations currently treated by sympa.pl will be done by the task
manager (digests sending, cleaning up in spools …).

Example of planned task (expire.yearly.task) :

title.fr procedure d'expiration : envoi de 2 messages d'avertissement avant
suppression
title.us expiration routine : sending of 2 warning mails before deletion
title.hu törlés menete: a végleges törlés elõtt 2 figyelmeztetõ levelet küld ki

/STEP1
@selection = select_subs (older ([creation_date]-1y))
send_msg (@selection, expire_warning1)
next ([execution_date]+3w, STEP2)

/STEP2
@selection = select_subs (older ([creation_date]-1y))
send_msg (@selection, expire_warning2)
next ([execution_date]+1w, STEP3)

/STEP3
@selection = select_subs (older ([creation_date]-1y))
@deleted = delete (@selection)

 12

send_msg (@deleted, expire_deletion)
stop ()

The tasks models are customizable (like scenarios) in folders list_task_models and
global_task_models.

9 Virtual robots

The idea of virtual robot is to Sympa what «virtual hosts» are to Apache: the way to manage
several mailing-lists services with a single Sympa server and an easier administration. In user
view (subscriber, list owners, moderators), services turn out to be completely independent.
Example :

https://listes.cru.fr/wws ,
https://listes.renater.fr/wws ,
http://listes-dgcid.diplomatie.gouv.fr/wws, …

9.1 Internal organization of virtual robots

To each virtual robot tallies a robot address sympa@domaine. The robot lists are managed in the
virtual robot domain. The mailing lists are visible only via the robot of the same domain.
To succeed in setting up a virtual robot, it must be understood how Sympa and WWSympa
choose the virtual robot context to apply to each message or HTTP request.

1. sympa.pl treats messages which were put in the message spool via the queue program

and alias of the electronic mail engine. Example :

cours-sympa-20-03-2002@cru.fr: “| /home/sympa/bin/queue sympa-fr@cru.fr “

sympa.pl retrieves the argument from the queue program to identify the list and the
corresponding robot (a header field x-sympa-to: cours-sympa-20-03-2002@cru.fr is
added to the message).

2. wwsympa.fcgi : each HTTP request is qualified by the SERVER_NAME environment

variable (the host called by the client thus the one used for the definition of the Apache
virtual host). An internal table in Sympa, built from these robot configuration files, allows
to match this host name and the virtual robot domain. For example listes.cru.fr serves
the virtual robot cru.fr.

9.2 Creating a virtual robot

9.2.1 DNS

You must define a MX record in the DNS for the virtual domain and a CNAME or a host (A
record) for the associated web server.

In the case of a HTTPS server, you will have to define a new IP address and not a CNAME
(constraint due to the stacked architecture of the HTTP protocol under the SSL layer).

 13

9.2.2 Configure your SMTP engine

Your MTA must recognize the new domain.
• With sendmail and the macro m4 see http://www.sendmail.org/virtual-hosting.html
• With Postfix see http://www.postfix.org/virtual.5.html
• With sendmail and the French “kit Jussieu” see http://www-crc.u-strasbg.fr/docs/kit-

jussieu/support/node115.html

9.2.3 Creating aliases

listmaster@virtual.fr: “|~sympa/bin/queue listmaster@virtual.fr“
sympa@virtual.fr: “|~sympa/bin/queue sympa@virtual.fr“
sympa-request@virtual.fr: “|~sympa/bin/queue listmaster@virtual.fr“
bounce+*@virtual.fr : "| ~sympa/bin/bouncequeue sympa "

9.2.4 Apache

Configure a virtual host on Apache. It’s not necessary to define one/many FastCgi server(s)
for each virtual robot since each FastCgi server is able to serve any virtual robot. Therefore,
we find the FastCgi servers definition in the common part of the Apache configuration and
the software path in each virtual host :

AddHandler .fcgi
FastCgiServer /bin/sympa/bin/wwsympa.fcgi -processes 3 -idle-timeout 120
<VirtualHost 195.220.94.165:80>
ServerName listes.virtual.fr
<Location /wws>
 SetHandler fastcgi-script
</Location>
ScriptAlias /wws /home/sympa/bin/wwsympa.fcgi
</VirtualHost>

The remaining will be treated sooner or later via a creation form of virtual robot. While
waiting these refinements, you should create « manually » each environment. In the following
examples, the virtual robot serves the domain virtual.fr.

9.2.5 robot.conf

The virtual.fr robot is defined by the robot.conf file located in the ~sympa/etc/virtual.fr/
folder. This configuration file allows to changer parameters of sympa.conf and
wwwsympa.conf (for example the page colors). But robot.conf must define the parameter
http_host which will be used to match the name of the HTTP server referenced and the
corresponding virtual robot.

Description of robot parameters :

• email : the local part of the robot address. Example : sympa ;

• title : the welcome page title;

http://www.sendmail.org/virtual-hosting.html
http://www.postfix.org/virtual.5.html
http://www-crc.u-strasbg.fr/docs/kit-jussieu/support/node115.html
http://www-crc.u-strasbg.fr/docs/kit-jussieu/support/node115.html

• default_home : the default welcome page (home : classification by topics or lists :
alphabetical order) ;

• create_list : the name of the scenario controlling the access to the routine which
creates lists ;

• lang : the default language of the robot ;

• log_smtp : activation of the log calls to sendmail ;

• log_level : level of log ;

• listmaster : e-mail of list masters separated by « , » ;

• max_size : maximum size of messages (redefinition allowed for each list) ;

• dark_color, light_color, text_color, bg_color, error_color, selected_color,

shaded_color.

Example :

http_host must be the same as the server_name defined in Apache Virtual Host
http_host demo.sympa.org

wwsympa_url https://demo.sympa.org/wws

title A virtual robot dedicated to Sympa demo

default_home lists

log_level 3

dark_color #00aa00

light_color #ddffdd

selected_color #0099cc

bg_color #dddddd

9.2.6 The working directory

Create a folder which will contain the virtual robot lists : ~sympa/expl/virtual.fr. Each list
created in this folder is assigned to this robot.

9.2.7 Restart Apache, Sendmail and Sympa’s daemon

The new virtual robots detection is not dynamical for these three software.

9.2.8 Other configuration

As each list can have a specific set of scenarios and templates, these configuration elements
can be defined in a virtual robot.

 15

When evaluating a scenario, like the intranet scenario that controls the send operation in
the foo list of the virtual.fr robot, Sympa searches the send.intranet file in the
following folders :

- ~sympa/expl/virtual.fr/foo/scenarii/ (only for the operations relating
to a list) ;

- ~sympa/etc/virtual.fr/scenarii/ ;
- ~sympa/etc/scenarii/ ;
- ~sympa/bin/etc/scenarii/.

The same strategy is applied for the templates (models of messages and HTML pages) :

• ~sympa/expl/virtual.fr/foo/ (warning : no subfolder templates) ;
• ~sympa/etc/virtual.fr/template/ ;
• ~sympa/etc/template/ ;
• ~sympa/bin/etc/template/.

This organization allows to completely personalize by list, by robot or for the web site
appearance both rights for each page of the web interface and the mailing robot.

10 Writing your own scenarios

The scenario system is a language enabling to specify the rights associated to each operation.
Almost all the operations in Sympa are under the control of scenarios : lists creation,
messages broadcasting, access to a list deposit space and so on. The visibility of a list is
controlled by a scenario which allows to hide lists from other categories of users. Therefore, it
is possible to create specific views for many categories of users in order to create intranets.

See : http://listes.cru.fr/sympa/doc/sympa/node11.html#SECTION001180000000000000000

Sympa is distributed with a default set of scenarios which are installed in
~sympa/bin/etc/scenari,
http://listes.cru.fr/sympa/distribution/current/src/etc/scenari/

Never modify these files, next update of Sympa would crush your work. If you wish to
modify the standard scenarios, copy and edit them in the ~sympa/etc/scenarii folder.

10.1 Principle of scenario operations

A scenario is a list of rules sequentially called. Each rule is made of :
• a condition relating to the calling context of the scenario ;
• the authentication method used (Header field From:, password or authentication

certificate) ;
• an action which will be called if the rule apply to the calling context.

Example :

title.fr limité aux abonnés authentifiés
title.cz pouze èlenové
title.hu listatagok

 16

http://listes.cru.fr/sympa/doc/sympa/node11.html
http://listes.cru.fr/sympa/distribution/current/src/etc/scenari/

is_subscriber([listname],[sender]) smtp -> request_auth
is_subscriber([listname],[sender]) smime,md5 -> do_it

This example, applied to the control of messages distribution, enables to limit the sending of
messages to identified subscribers. We can notice preset conditions like is_subscriber
and variables ([listname] and [sender]) which are instantiated while calling, depending
on the current context. Three authentication methods are recognized by the scenarios :

• smtp : indicates that we trust the From: header field of a message ;
• md5 : password authentication (passwords given by Sympa are built by the MD5 hash

algorithm) ;
• smime : strong authentication based on an X509 certificate (S/MIME signature or

HTTPS session with client certificate).

Actions in right hand of scenarios rules are rudimentary indicators : request_auth (return
message with a request of authentication), do_it (do the service).

If you write scenarios, think about adding a title (title.<lang>), this one will appear in the
pop-down menus of the list configuration form.

Each scenario ends up by an implicit rejecting rule :

true() smtp,smime,md5 -> reject

10.1.1 Available conditions in a scenario :

• true ()
• equal (<value>, <value>)
• match (<var>, /perl_regexp/)
• is_subscriber (<listname>, <value>)
• is_owner (<listname>, <value>)
• is_editor (<listname>, <value>)
• is_listmaster (<value>)
• older (<date>, <date>)
• newer (<date>, <date>) # true if first date is posterior to the second date

To reverse a condition : prefix it by a !

10.1.2 Available variables in a scenario :

• [sender] : the sender of the current message, by extension, the caller of the current
request ;

• [email] : in commands which accept e-mail in argument, used only in an
unsubscription context ;

• [subscriber-><subscriber_key_word>] : subscriber attributes : email | gecos | bounce |
reception | visibility | date | update_date |<additional_subscriber_fields> .

 17

It is also possible to add owner fields in the subscriber table and to reach them in scenarios
and templates (See http://listes.cru.fr/sympa/doc/sympa/node5.html#db-additional-subscriber-
fields).

• [listname]
• [list-><list_key_word>] : all entries of the list configuration file
• [conf-><conf_key_word>] : all elements of Sympa configuration (sympa.conf)
• [msg_header-><smtp_key_word>] : all message header fields (in send scenarios

only)
To moderate messages containing attachments proceed like this:
match([header->Content-Type],/multipart/) smtp,smime,md5 -> editorkey

• [msg_body] : body of the message

To block French messages in a English-speaking list :
match([msg_body],/[àâçéèêüùû]/) smtp,md5,smime -> reject
match([msg_body],/bonjour/) smtp,md5,smime -> reject

• [msg_part->type]
• [msg_part->body] Any test applied to these variables is a logical OR applied to each

part of the message.
• [is_bcc] Indicate that a target list is neither in the To: header field nor in the Cc:

header field

An anti-spam trick used at the CRU : a common rule to each scenario :
equal([is_bcc],'1') smtp -> request_auth

This rule is defined in the file : /home/sympa/etc/scenarii/include.send.header
(files include.<action>.header are included as first rules of all scenarios <action>.*).

• [remote_host] : the REMOTE_HOST variable set by the HTTP server. It assumes that Apache

has been configured to evaluate this variable, but it enables to create a kind of intranet, in
particular by using this variable in the visibility scenario, allowing to control “who
has the rights to know the being of a given list”.

11 Templates

Reports of commands sent by Sympa are described in «templates» (except for some old
commands) ; this separation of code and messages makes it easier to translate and customize
mesages. Templates are model messages that can contain programming elements (variables,
conditions, loops...) which will be evaluated while sending the message.

11.1 Organization

Default templates are provided in the Sympa distribution, translated in 10 languages. They are
customizable at different level, in the following order of priorities :

1. the list (~sympa/expl/mylist/)
2. the virtual robot (~sympa/etc/virtual.fr/etc/templates/)
3. the site (~sympa/etc/templates/)
4. the distribution (~sympa/bin/etc/templates/)

 18

http://listes.cru.fr/sympa/doc/sympa/node5.html
http://listes.cru.fr/sympa/doc/sympa/node5.html

Warning : if you customize templates, do it in ~sympa/etc/templates/ (the folder
~sympa/bin/etc/templates is overwriten at each new installation).

Files have the .tpl extension. If the template relates to a particular language, it will have
the .<lang>.tpl extension.

Templates can include SMTP header fields (useful to define multipart messages), in which
case Sympa does not add SMTP header fields to the message. A template is regarded as
MIME if it starts with a From: (see further example).

11.2 Format

Syntactic elements of templates are defined between brackets ‘[]’ ; their interpretation is not
case sensitive.

11.2.1 Variables

Examples :

[url]
[is_owner]
[list->name]
[user->lang]

Operator -> allows to refer an entry of a HASH.

List of usable variables for each template is provided in the documentation : see template site
and template list).

11.2.2 Conditions

A control structure [IF...][ELSE][ENDIF] allows to adapt the page according to the context
linked to its use :

Example:

[IF user->lang=fr]
Bienvenue dans la liste [list->name]
[ELSIF user->lang=es]
Bienvenida en la lista [list->name]
[ELSE]
Welcome in list [list->name]
[ENDIF]

11.2.3 Loops

Loops allow to look over a list of elements (represented internally by an array or an
associative array).

Example :

 19

http://listes.cru.fr/sympa/doc/sympa/node11.html
http://listes.cru.fr/sympa/doc/sympa/node12.html

Les listes publiques :

[FOREACH l IN lists]
 [l->NAME]
 [l->subject]
[END]

[elt->NAME] is a particular variable containing the current key in the associative array (in
the example above, the name list). In the case of an array loop, the[elt->INDEX] variable
contains the current index.

11.2.4 Enclosing of files

Enclosed files can be « passive » (INCLUDE) or the included file can be interpreted as a
template (PARSE). The path of the file to be included will be provided directly or via a
variable.

Example of textual files included :

[INCLUDE 'archives/last_message']

[INCLUDE file_path]

Example of template inclusions (themselves parsed) :

[PARSE 'welcome.tpl']

[PARSE file_path]

11.2.5 Escapement

It is possible to interrupt the interpretation of a template (to use [] for instance). Directives
[STOPPARSE] and [STARTPARSE] allow (respectively) to stop and resume the
interpretation of the template.

Example of an escapement sequence in a sensitive JavaScript function :

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!-- for other browsers
 function toggle_selection(myfield) {
 for (i = 0; i < myfield.length; i++) {
 [STOPPARSE]
 if (myfield[i].checked) {
 myfield[i].checked = false;
 }else {
 myfield[i].checked = true;
 }
 [STARTPARSE]
 }
 }
// end browsers -->
</SCRIPT>
</HEAD>

11.3 List of templates

 20

In a general manner, a template is a model of command report. In a near future, all commands
reports will be defined in templates (currently some use NLS).

Template Associated operation Description of the message
bye.tpl SIGNOFF Withdrawal message
global_remind.tpl REMIND * Recall of the whole subscriptions
helpfile.tpl HELP Help on Sympa
info_report.tpl INFO Information on a list
invite.tpl INVITE Invitation message
list_created.tp Notification list creation
list_unknown.tpl Non-delivery Report (unknown list)
listmaster_notification.tpl Notifications for listmaster(s)
lists.tpl LISTS Catalog of lists
moderate.tpl Notification for a message to be moderated
modindex.tpl MODINDEX List of messages on moderation standby
reject.tpl REJECT Notification for message rejection
remind.tpl REMIND Subscription remind
removed.tpl DEL Removal message
review.tpl REVIEW Subscribers list
sendpasswd.tpl Password remind
stats_report.tpl STATS Statistics on the list
summary.tpl Message in “summary” mode
welcome.tpl SUBSCRIBE / ADD Welcome message
x509-user-cert-
missing.tpl

 Subscriber notification : no certificate for
encryption

your_infected_msg.tpl Subscriber notification : reject of infected
message

11.4 Examples

Welcome message (welcome.fr.tpl) including the last diffused message :

From: abc-request@cru.fr
Subject: Welcome in list ABC
Content-type: multipart/mixed; boundary="myboundary"

--myboundary
Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: 8bit

Welcome in the list

You will find bellow the latest distributed :

--myboundary
Content-Type: message/rfc822

[INCLUDE '/home/sympa/expl/abc/archives/last_message']

--myboundary--

12 LDAP support in SYMPA

 21

In its release 3.3.3, Sympa proposes an LDAP support for the three following functionalities :
web authentication, dynamical lists setup and LDAP filters in scenarios.
This course’s section is a brief and practical introduction to LDAP, and then a tutorial for
setting up LDAP in Sympa for the three cases quoted above.
The whole set of configuration possibilities are not described ; for that, refer to Sympa
handbook : http://listes.cru.fr/sympa/doc/sympa/ .

12.1 Short introduction to LDAP

This paragraph describes in a very coarse and practical manner LDAP technology.
LDAP is a ‘standard’ protocol allowing an easy and fast access to information of a directory
in a broad sense.
LDAP servers are optimized to quickly deliver data in reading ; writing data via the LDAP
protocol in general takes up a lot of time. Therefore, information proposed by an LDAP
server is relatively stable, such as information on employees of a company, its servers, its
communication object proposed by these servers …
LDAP information is in general structured in a hierarchical way.

12.1.1 Structure of an LDAP base

The structure of an LDAP server is called DIT (Directory Information Tree).
An LDAP server has no knowledge of the type of the objects that it publishes ; the different
objects are defined by a diagram specific to an LDAP server.
The root of an LDAP server is called root DN. An example of root DN could be :
DC=MyInstitution, DC=us. This example assumes a match between the naming of the root of
LDAP and DNS ; it’s in no way obligatory (but desirable for unicity reasons ?).
An LDAP object is identified by its Distinguish Name (DN), which is unique in an LDAP
base, and describes its address in the tree.
Thus, the DN of an LDAP object located in the ‘container’ OU=People of the preceding root
might write as follows :

DN : uid=tartempion,OU=People,DC=MonEtabliss,DC=fr

The leftmost part of the DN (here, uid=tartempion) is called the RDN : Relative Distinguish
Name. It also appears as an attribute of the object.

12.1.2 Composition of an LDAP object

An LDAP entry is addressed by its DN. It is made up of various attributes, which have no
significance for the server (except objectClass and userpassword attributes).
These attributes can have multiple values.

- The objectClass attribute establishes the type of the object handled ; in fact, the
diagram of an LDAP base describes the set of objectClass supported by this base, and
for each objectClass, possible and required attributes ;

- The userPassword attribute: it allows to assign a password to an LDAP entry ; this
password can either be in clear or encrypted form. If the password is encrypted, the type
of encryption is defined by putting the encryption type in front of the password,
enclosed by the characters ‘{‘ and ‘}’ ; for instance, {sha}xxxxxxx for a sha type
password.

 22

http://listes.cru.fr/sympa/doc/sympa/

An LDAP object necessarily has a multiple value objectCLass attributed to it. The RDN is
part of attributes of an LDAP entry. The unicity of the RDN is not ensured in an LDAP base.
The syntax and the use of each attribute are described in the diagram : numerical, ‘case
sensitive’, single or multiple valued, obligatory or not…

12.1.3 LDAP groups

Two ‘standard’ classes of LDAP define objects of type group : groupOfUniqueNames and
GroupOfNames.
These objects have various standardized attributes, and a multiple value one which contains
the DN of LDAP objects belonging to the group ; this standardized attribute is named
respectively uniqueMember or Member, the first being more common.
Many LDAP authentication interfaces support these groups (and particularly the first,
groupOfUniqueNames).

12.1.4 Level of protocol

The ‘standardized’ definition of LDAP protocol is currently in version 3 - not to be confused
with the various versions of LDAP servers (Iplanet : 5.xx, OpenLDAP : 2.xx, …).

12.1.5 Accentuated characters

Since version 3 of the LDAP protocol, accentuated characters are coded in UTF8.

12.1.6 Exchange format

An exchange format of LDAP objects has been standardized : format LDIF (???). Non pure
ASCII characters are encoded using the ‘encode64’ format.

12.1.7 Access rights

Access rights are defined (or not) on the LDAP server level in order to give access in reading,
writing and creating …, according to the server authentication.

12.1.8 Unfolding of LDAP request

An LDAP request usually unfolds the following way :
- Establishing a TCP/IP connection to the LDAP server (IP address and TCP port) ;
- Establishing of a logical connection (bind) to the LDAP server ; this logical connection

is made up of a DN and the password of the client.
An anonymous connection is also available with empty DN and password ;

- Generating of one or several requests, carrying the following elements :
. The DN of a tree search, or the root of the server ;
. the range of the search : sub (like sub-tree) for an object located on any level of the

search directory; one for an object located strictly on the same level of the search
directory ; base for the object himself ;

. A search filter.
- Possibly, entering the list of attributes wanted, and other options ;
- Breaking off the logical connection (unbind) ;
- Breaking off the TCP connection.

 23

Since version 3 of LDAP, it is possible to generate an LDAP request without a preliminary
bind ; in this case, an anonymous connection is assumed.

12.1.9 LDAP search filters

The simplest LDAP filter takes the following shape « (AttributeName=AttributeValue) ».
Thus, to interrogate all the entries which have the attributes ‘cn’ valuated as ‘toto’, the LDAP
filter will be (cn=toto). The value of the attribute (AttributeValue) can have the character ‘*’ ;
it replace any occurrence of an unspecified character.
It is possible (and even frequent), to generate a more elaborate filter, using logical operators :
AND (&), OR (|), NOT (!).
For instance :
(&(objectClass=inetOrgPerson)(cn=math*)(|(serv=cri)(serv=pers)))
gives all the entries of inetOrgPerson type, having the attribute cn starting by math belonging
to the cri or pers service.

12.1.10 Replicates

The introduction of a reliable and a powerful LDAP service very often requires the setting up
of replicates of the LDAP base. Replicate technique is not described in the LDAP protocol ; it
is therefore specific to each implementation.
Very often, the replicate is of master/slave type.
In case of replicate use, it is necessary to setup clients in order to enable them to make
requests to a backup server in the case of an unavailability of the first server.

12.1.11 Usual configuration of an LDAP client

LDAP clients are setup in the same way. As we have previously seen, they require the
following parameters :

- HOST : the name of the computer supporting the LDAP server ;
- PORT : the TCP port of the LDAP server ;
- SUFFIXE : base of the search ;
- SCOPE : range of the search ;
- FILTRE : filter of the search ;
- If the request requires an non anonymous bind, the DN and the password of the bind

will be indicated in the parameter settings.
Other parameters can be useful according to the software.
In case of replicate use, the syntax is very often as follows :

HOST ldap1.univ.fr:392,ldap2.univ.fr:389

Specify desired attributes
When we don’t need all the object attributes, it is advisable to specify the list of desired
attributes ; this can considerably limit the amount of information given back by the requests
made.

Specify the objectClass in requests made
The objectClass allows to select the type of object we wish to reach. It often happends that the
same attribute is present in different type objects, such as attributes CN (Common Name),
description, …

 24

LDAP authentication
If the LDAP server administrator has correctly configured the LDAP server, it is impossible
for clients to read the user password attribute. Authentication technique based on LDAP is as
follows :
• An anonymous connection, in order to retrieve the DN of a person to identify, according

to the identifier given by the user :
 Example of request : (&(objectCLass=inetOrgPerson)(uid=IdentifiantUser))

• Bind with the DN user and the password entered. If the bind is accepted, the password is

correct.

12.1.12 Example of LDAP objects

See appendix 1 for an example of the type of person and an example of a group of people.

12.2 Prerequisite for LDAP support in Sympa

The perl-ldap module must be installed on a computer supporting the software Sympa so
as to use the LDAP functionalities of Sympa.

12.3 Use of LDAP for authentication in wwsympa

12.3.1 Authentication in wwsympa

The wwsympa interface is geometricaly variable according to the type of user ‘connected’.
The types of user are as follows :

- anonymous : user not logged in in the interface ;
- subscriber to one or more lists ;
- moderator and/or owner of one or more lists ;
- listmaster.

The last three cases require of course authentication in the interface wwsympa.
In an internal way, a user identifies himself with his e-mail and a password known by Sympa
(stored in Sympa’s data base, in an encrypted way, but with the possibility of being decoded).
The initial password of the user is provided by Sympa ; the user can change it later on via
wwsympa. He can also ask Sympa to remind his password.

12.3.2 Authentication with LDAP

To use LDAP authentication, first you need to configure Sympa ; this can be done with the
help of the auth.conf file, located in ~sympa/etc/ folder.
When this file is present, and well configured, authentication in wwsympa can be done in this
way :

- The user enters his e-mail or his LDAP login, and his password ;
- If the user name matches a valid e-mail, Sympa tries to authenticate via its internal

mechanism described before ;
- If authentication fails, or the user name does not match a valid e-mail, wwsympa will

try authentification with the LDAP system.

 25

12.3.2.1 auth.conf file

Consult the reference handbook at the following address :
http://listes.cru.fr/sympa/doc/sympa/node8.html#SECTION00811000000000000000
This file contains one or more paragraphs starting by the LDAP keyword.
Each paragraph is made up of a set of key words <-> value couples.
If you wish to make a comment, start the line by the character #. Blank lines will be ignored.

Here is an example of an LDAP paragraph :

ldap
host ldap.univ.fr:389
suffix ou=People,dc=univ,dc=fr
scope one
timeout 10
get_dn_by_uid_filter (&(objectclass=inetOrgPerson)(uid=[sender]))
get_dn_by_email_filter (|(mail=[sender])(maildrop=[sender]))
email_attribute mail
alternative_ email_attribute maildrop

The keywords host, suffix and scope match the basic parameter of an LDAP request as shown
before.
The host directive enables the support of replicate mechanism ; therefore, we can specify
several LDAP servers ; Sympa will try to bind to the first one, then the following one if the
first is unavailable, and so on …
Syntax is as follows :

host ldap.univ.fr:389,ldap2.univ-fr:392,ldap1.univ.fr:389

As indicated previously, the user can login in the wwsympa interface either with an LDAP
login, or by entering his e-mail.
In the first case, the filter used for the search will be the one specified by the directive
get_dn_by_uid_filter and, in the second one, by the directive get_dn_by_email_filter.
Note that wwsympa will replace all occurrences of "[sender]" with the login entered by the
user in the wwsympa interface.
Thanks to one filter or the other, the LDAP entry matching the user is loaded. wwsympa then
controls the password thanks to an LDAP bind with the DN of this entry, and the entered
password.
If this bind is accepted, the user is authenticated. It is now up to wwsympa to establish the
link with this ‘LDAP’ user and a Sympa user, known by his e-mail.
It is the role of email_attribute and alternative_email_attribute directives.
email_attribute indicates the name of the LDAP attribute that contains the canonical e-mail of
the person.
alternative_email_attribute is an optional directive, which contains the name of a list of
attributes that are being used in the LDAP directory for electronic mail aliases.
In the above example, we can notice that the mail attribute contains the canonical e-mail, and
that the maildrop attribute contains possibly an alternative e-mail address (alias).

12.3.2.2 Authentication with several LDAP servers

 26

http://listes.cru.fr/sympa/doc/sympa/node8.html

There can be several LDAP paragraphs in the file auth.conf. In this case, wwsympa tries
LDAP authentication firstly towards the server described in the first LDAP paragraph, then
towards the second if the first attempt fails, and so on.
It would be possible, for example, for a university which lays out one LDAP server for staff
and one for students, to enable an authentication towards these 2 different servers.

12.3.3 wwsympa behavior with an LDAP authentication

wwsympa keeps a record of the type of authentication (using a HTTP cookie). Some menus
proposed by wwsympa are modified in case of an LDAP authentication.
In particular, in the user preferences, changing the password is no longer available.
Moreover, if the user has alternative e-mails in the LDAP directory, Sympa proposes to store
them in its internal tables.

Intranet use
At the University of Nancy2, authentication to access various data-processing resources
(Intranet, electronic mail …) is based on an LDAP directory, and the uid attribute which
contains the user login. Therefore, it is important that users use the same authentication
methods to access to wwsympa.
Sympa is used for internal lists, and also for lists completely or partially external.
We thus wanted wwsympa to always be able to authenticate with its native mechanism for
external people, but with LDAP and login for internal users.
This was carried out in a simple manner thanks to the flexibility of Sympa templates : a small
part of JavaScript code was added to the template file (loginbanner.tpl) which manages user
login.
If this login is an e-mail, and ends by ‘univ-nancy2.fr’, a warning message appears and asks
him to enter his ‘LDAP’ login.

12.4 Lists issued from LDAP requests

Sympa can manage various types of lists : ‘native’ lists, which are stored in its data base, and
‘include’ lists.
This match the user_data_source parameter in the list’s configuration files, which can be set
to database or include.
The “include” lists are made up with the help of requests to SQL or LDAP servers.
There are two different definitions of LDAP lists : ldap_query and ldap_2level_query.
Consult the reference documentation at the following address :

http://listes.cru.fr/sympa/doc/sympa/node14.html#SECTION001420000000000000000

12.4.1 Lists of type ‘ldap_query’

These lists are dynamically made up with the help of a simple LDAP request. They are
defined in the configuration file of the list thanks to the include_ldap_query
paragraph.

Here is an example :

include_ldap_query
host ldap.univ.fr

 27

http://listes.cru.fr/sympa/doc/sympa/node14.html

port 389
suffix ou=People,dc=univ,dc=fr
scope one
timeout 10
filter (&(objectClass=n2pers)(mail=*)(n2PersType=E)(n2PersServ=ufrdroit))
attrs mail
select first

We recognize the usual setting of an LDAP request. Here, we wish to build a list of teachers
of the law university section having the e-mail attribute valued. The attrs directive gives the
name of the attribute containing the e-mail address.
If a non anonymous request is necessary, it is possible to specify the DN (user) and the
password (passwd) of the connection. The select directive makes it possible to tell Sympa
how to act if the attribute containing the e-mail address has multiple values
The generated list will thus be all the people corresponding to the request.

12.4.2 Lists of type ‘ldap_2level_query’

These lists are dynamically made up with the help of complex LDAP requests, on two levels.
A first request makes it possible to retrieve a list of values ; then, for each retrieved value, a
new request will allow it to retrieve the matching e-mail address.
This type of lists enables in particular to treat LDAP groups (groupOfNames or
groupOfUniqueNames).

The paragraph include_ldap_2level_query allows us to define such a list. Here is an
example, which treats groups of the type groupOfUniqueNames :

include_ldap_2level_query
host ldap.univ.fr
port 389
suffix1 ou=Groups,dc=univ,dc=fr
scope1 one
filter1 (&(objectClass=groupOfUniqueNames)(|(cn=cri)(cn=ufrmi)))
attrs1 uniquemember
select1 all
suffix2 [attrs1]
scope2 base
filter2 (objetcClass=n2pers)
attrs2 mail
select2 first

Here, the first request makes it possible to build a list of DN’s people which are in the groups
LDAP cri or ufrmi ; the second one retrieve the matching e-mail attribute.
The [attrs1] value can be used in the directives suffix2 and/or filter2 ; Sympa will replace it,
repetitively by all the values given back by the first request.
When [attrs1] is used for the directive suffix2, the attribute returned by the first request must
be a DN. Therefore it’s logical to assign the value base to the attribute scope2.
Note that it’s possible to make complex processing, with the use of directive regex1 (or
regex2) which makes it possible to apply a filter of the type ‘regular expression’ to the result
of each request ; select1 (or select2) must then have the value regex.
Note also that lists of this type can generate an important load : if the list has n members, to
create the list, there will be n + 1 LDAP requests.

Sympa makes it possible to define several paragraphs of the type “include” for a list. It is thus
possible to have a list issued from several LDAP and/or SQL requests.

 28

12.4.3 Include list and Sympa’s cache

In order to improve the performances of Sympa and wwsympa and to limit the load on SQL
or LDAP servers with the include lists, Sympa manages a cache of these dynamical lists.

Therefore, these lists are not rebuilt each time Sympa or wwsympa needs it, but are kept in an
internal cache. How frequently this cache is refreshed is settled in the configuration file of the
list, thanks to the ttl directive.

12.4.4 ttl and cache of lists

Sympa refreshes a list when a reference is made and when his ttl has run out. wwsympa
doesn’t do this work, which may lead to a long response time, if the dynamical lists are
numerous and if external sources are slow. Consequently, wwsympa shares a file « .db » with
sympa.pl that Sympa updates.
We expect to replace this shared cache via a file by a cache in a database accessible to each of
the processes sympa.pl, wwsympa.fcgi, task_manager.pl, bounce.pl making it possible to
have the same performances for the lists in include mode as lists in database mode. It would
be then possible to manage bounces and put subscription options for the whole lists. Update
of the cache would be dedicated to the task manager (task_manager.pl).

12.5 Use of ‘LDAP filters’ in scenarios

12.5.1 Named Filters (NF)

These filters bring LDAP support at the scenario level. A filter will define an LDAP request.
It would be usable in the ‘condition’ part of a scenario and enable thus to indicate a list of
people authorized to make an act, with the help of this request.

Named Filters (we will use abbreviation NF) are ASCII files written in the
~sympa/etc/search_filters/ folder.
These files have necessarily the '.ldap' extension.

Here is an example of the contents of the "EnsLettres.ldap" NF:

host ldap2.univ.fr:392,ldap.univ.fr:389
suffix ou=People,dc=univ,dc=fr
scope sub
filter (&(objetClass=n2pers)(mail=*)(n2Type=E)(n2Campus=lettres)
(|(mail=[sender])(maildrop=[sender])))

It is a ‘usual’ configuration of an LDAP request. Sympa will replace all occurrences of
‘[sender]’ by the content of ‘[sender]’ for scenarios using this filter, in general, the e-mail
address of the user.
In this example, the filter will give some rights to the user having a valued mail attribute,
from type E (Teacher ?) belonging to the Lettres campus and whose mail or maildrop
attribute corresponds to his e-mail address.

12.5.2 Use of Named Filters (NF) in a scenario

 29

The NF are usable in the condition part of a scenario.
The syntax is : search(NomDuFiltre).

Here is an example of scenario used for people having the right to send an e-mail in a list ; it
is called send.EnsLettresSimple :

title.fr Envoi autorise aux abonnes de la liste et aux enseignants du campus
lettres
is_subscriber([listname],[sender]) smtp,md5,smime do_it
search(EnsLettres.ldap,[sender]) smtp,md5,smime do_it

Here, every subscriber of list ‘listname’ and the teacher of ‘lettres’ campus have the right to
send an e-mail to the list ‘listname’.

12.5.3 Scope of these filters

NF associated with Sympa’s scenarios offer very advanced possibilities of customization.
Thus, the different roles managed by Sympa (listmaster, owner, moderator, subscriber) could
eventually issue from LDAP requests.

Cache of NF
Sympa manages a cache of NF. While setting up, it is necessary to start/restart Sympa in order
to test modifications brought to a filter.

12.6 Conclusion on Sympa and LDAP

Sympa natively offers very advanced possibilities of customization. The LDAP support is
well integrated at different levels, and offers then these possibilities.
Some improvements are to be desirable, particularly in managing dynamical lists and their
refreshment ; this will be done in future versions of Sympa.
Other improvements linked to LDAP seem to be scheduled; take a look at the sources in order
to be convinced.

13 MySQL configuration

Sympa requires the services of a database for managing subscribers (one of MySQL,
PostgreSQL, Oracle or Sybase). We will introduce the configuration steps with MySQL
especially because we use it on our development platform.
For the following, we assume that you a have a MySQL server installed.

13.1 Setting up Perl modules

Sympa accesses its database via DBI, the standard Perl API to access databases. You must set
up the DBI module, not part of the standard distribution of Perl. DBI requires a driver (DBD)
for each type of database you’ll be using.

 30

Perl modules to set up :
• DBI >= 1.06
• DBD::mysql >= 2.407 (give with Msql-Mysql-modules)

The setup of these modules is taken in charge while installing Sympa. You can also get them :

• Under the shape of tar.gz on the nearest site of CPAN (http://cpan.cict.fr/) ;
• Under the shape of a RPM on RPMFind

(http://www.rpmfind.net/linux/RPM/Development_Languages_Perl.html).

If you setup the DBD::mysql module under the shape of a RPM, it will require the setup of
the mysql-devel RPM, given the access libraries to MySQL.

13.2 Create the database

The database of Sympa has 2 tables :
• user_table : user preferences ;
• subscriber_table : data related to the subscription.

The script which creates the base (see below) is given with the distribution
(src/etc/script/create_db.mysql). Use the mysql command line client to execute the script :

/usr/bin/mysql –u root –p < create_db.mysql

CREATE DATABASE sympa;

Connect to DB
\r sympa

CREATE TABLE user_table (
 email_user varchar (100) NOT NULL,
 gecos_user varchar (150),
 password_user varchar (40),
 cookie_delay_user int,
 lang_user varchar (10),
 PRIMARY KEY (email_user)
);

CREATE TABLE subscriber_table (
 list_subscriber varchar (50) NOT NULL,
 user_subscriber varchar (100) NOT NULL,
 date_subscriber datetime NOT NULL,
 update_subscriber datetime,
 visibility_subscriber varchar (20),
 reception_subscriber varchar (20),
 bounce_subscriber varchar (30),
 comment_subscriber varchar (150),
 PRIMARY KEY (list_subscriber, user_subscriber),
 INDEX (user_subscriber,list_subscriber)
);

When the base is created, you can redefine the access rights to the base sympa for user
sympa :

/usr/bin/mysql –u root –p
mysql> privilege all on sympa.* to sympa@localhost identified by
‘your_password’;
mysql> flush privileges;

 31

http://cpan.cict.fr/
http://www.rpmfind.net/linux/RPM/Development_Languages_Perl.html
mailto:sympa@localhost

13.3 Configuration of sympa.conf

Access parameters to the database are defined as followed in sympa.conf :

extrait de sympa.conf
db_type mysql
db_host localhost
db_name sympa
db_user sympa
db_passwd your_password

Contrary to line clients (mysql, mysqladmin), C and Perl (DBI) libraries don’t use by default
the my.cnf configuration file. To take account of your my.cnf, add in sympa.conf :
db_options mysql_read_default_file=/etc/my.cnf

The list parameter user_data_source defines the type of data sources for subscribers.
The default value is database (use of the data base describes in sympa.conf). Other
possible values are include and file.

13.4 Access tools to the database

13.4.1 mysql
mysql is the line client given with MySQL. It can execute SQL requests. It also has the
advantages of the shell Bash : completion, historic.

Example : list of subscribers of the list cours-sympa-20.03.2002

/usr/bin/mysql sympa
mysql> SELECT user_subscriber,date_subscriber FROM subscriber_table WHERE
list_subscriber = 'cours-sympa-20.03.2002';
+--------------------------------------+---------------------+
| user_subscriber | date_subscriber |
+--------------------------------------+---------------------+
alain.defrance@univ-xxx.fr	2002-02-13 10:05:24
ameyer@xxx.fr	2002-02-26 08:18:41
anas.agoumi@etu.xxx.fr	2002-02-12 12:00:17
andre.lagadec@xxx.gouv.fr	2002-02-08 15:37:20
..
+--------------------------------------+---------------------+
79 rows in set (0.01 sec)

13.4.2 phpMyAdmin

phpMyAdmin makes it possible to manage your MySQL databases via a web interface. It
allows easily (without SQL knowledge) to :

• create/modify/remove bases/tables/fields
• search/insert/edit/remove recordings

14 Optimizations / and load balancing

 32

http://phpwizard.net/projects/phpMyAdmin/index.html

14.1 Optimization of the distribution

Sympa does not include a SMTP client, it uses the services of the local MTA (sendmail,
postfix, exim or qmail) via a system call (the recipients are passed in parameters, the message
sent in the STDIN). Several parameters of sympa.conf define the way to use the MTA :

• sendmail, sendmail_args : program (compatible with sendmail) to use to send
messages ;

• maxsmtp (default 20) : maximum number of son sendmail processes thrown by
Sympa ;

• nrcpt (default 25): max. number of recipients by call to sendmail ; define the
collecting factor ;

• avg (default 10): maximum number of internet domains by call to sendmail.

The grouping factor (parameters nrcpt and avg) is set according to many criterias :

• The MTA used : MTAs have a very different behavior towards the grouping.
Sendmail estimates the grouping on the base of recipient only, received as arguments,
but it can send the body of the message only once for several recipients. Postfix tries a
delivery to contiguous MTA and keeps the grouping of recipients (several RCPT TO :
for one DATA). Qmail doesn’t do any grouping ;

• Size of the lists : in a small one, there are few subscribers from the same domain, very
quickly we reach avg recipients by packet. In a big list, with more subscribers per
internet domains, it is the nrcpt parameter that will limit the grouping.

• An anti-spam policy from remote sites : some ISP (Yahoo at least) reject some SMTP
sessions whose recipient number is judged to be suspicious. Make sure to keep the
nrcpt parameter under a reasonable limit.

This diagram shows the evolution of the number of processes on a Sympa server. Child
processes of Sympa, when their tasks are over, are not made free by sympa.pl until this one
has reached its limit (maxsmtp) or when the processing of the current message is over. This
leads to a massive release of processes (serrate). However, note that « defunct » processes
don’t use any resources on the server.

 33

14.2 Optimization with Sendmail

Two rival goals can be researched :

1. increase the reactivity of the service by decreasing the processing time of a message:
we increase maxsmtp even if it may load the server ;

2. decrease the load of the computer (decrease maxsmtp) for example to keep, during
periods of high use, fast response time on the web interface ; though it may take more
time.

We get a good arrangement by optimizing Sympa’s child processes.

14.2.1 Non canonification of addresses

In Sympa, the call to Sendmail jams until Sendmail has a potential CNAME from the DNS
for each recipient passed in argument. This DNS resolution is not necessary ; moreover if the
DNS is unavailable, the lists server is paralyzed.

We put this functionality in place only for outgoing sendmail calls via Sympa by using a
sendmail.cf specific to Sympa. In this configuration, the number of sendmail processes in
memory increases much more quickly.

 34

See FEATURE « nocanonify ».

14.2.2 Pull down timers

We can optimize some timers of SMTP sessions whose default values don’t fit the very bad
state of availability of some mailhosts. Indeed, these timers are in minutes or in sets of ten
minutes. Then, only a dozen overloaded servers amongst your big correspondents are enough
to make SMTP sessions available made for the most part (even exclusively) of sessions
waiting for an answer from the remote server. These settlements target a quick decrease in the
number of sendmail in memory in order to process other messages. Of course, consequently
the management of spools has to be set up .

The iconnect timer is the most interesting, we have changed its value :

O Timeout.iconnect=17s

See configuration options.

14.3 MySQL optimization

14.3.1 Structure of the base

Since version 3.23 of MySQL, tables are stored by default in the MyISAM format, offering
better performances than its ancestor ISAM. To move older table to the MyISAM format do :

#/usr/bin/mysql sympa
mysql> ALTER TABLE subscriber_table TYPE = MYISAM;
Query OK, 46307 rows affected (4.49 sec)
Records: 46307 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE user_table TYPE = MYISAM;
Query OK, 140355 rows affected (8.51 sec)
Records: 140355 Duplicates: 0 Warnings: 0

The myisamchk command makes it possible to do maintenance operations on tables of the
database. Example : increasing the size of the buffer for sorting

/usr/bin/myisamchk –O sort_buffer_size /var/lib/mysql/sympa/*.MYI

The OPTIMIZE TABLE request makes it possible to also optimize a MySQL table by
releasing non-used space and by defragging data files.

/usr/sbin/mysql sympa
mysql> OPTIMIZE TABLE subscriber_table;
+------------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+------------------------+----------+----------+----------+
| sympa.subscriber_table | optimize | status | OK |
+------------------------+----------+----------+----------+
1 row in set (7.74 sec)

 35

http://www.sendmail.org/m4/features.html
http://www.sendmail.org/m4/tweakingoptions.html

14.3.2 Configuration of the server

At startup, the MySQL daemon reads values of its options defined in the configuration file
/etc/my.cnf. To have a list of options at « runtime » :

mysqladmin variables
+---+
| Variable_name | Value |
+---+
ansi_mode	OFF
back_log	50
basedir	/usr/
……

Examples of configuration files adapted to different uses are given with MySQL (my-
huge.cnf, my-large.cnf, my-medium.cnf, my-small.cnf), in /usr/share/mysql/
for us. You can take them to optimize you setup.

By default the MySQL server doesn’t log operations on bases. To have logs, add the
following entry to you /etc/my.cnf :
 log = /var/log/mysql

14.4 Load balancing

It can be interesting to balance services of lists on several servers. The simplest solution is to
carry off external software from Sympa :

• The data base (MySQL, PostgreSQL …) : see the parameter db_host of sympa.conf.
• The e-mail server (sendmail , postfix …) : you can transmit out going traffic of the

lists servers to an another server (or several by doing Round Robin DNS).
See experiment use of mini sendmail.

You can also separate Sympa components, to know :

• mail treatment : sympa.pl ;
• web interface : wwsympa.fcgi ;
• management of non-given report : bounced.pl ;
• Management of web archives : archived.pl.

But the separation of this software makes it necessary to separate data between servers :

• database
Ö every software must have an access

• configuration files (sympa.conf & wwsympa.conf)
Ö NFS

• ~sympa/etc/
Ö NFS

• ~sympa/spool/
Ö NFS

• ~sympa/expl/
Ö NFS

• reports of non-delivery (used by bounced.pl and wwsympa.fcgi)
• web archives (used by archived.pl and wwsympa.fcgi)

 36

http://listes.cru.fr/sympa/fom-serve/cache/137.html

15 Setup of Sympa

The setup of Sympa is simple. After downloading the current version from
http://www.sympa.org, and creating a dedicated user sympa.sympa, extract files from the
tar, and proceed to the setup :

% ./configure
% make
% make install

Of course, this is not the only thing to do. You must also install other products like antivirus,
e-mail server, the database and the HTTP server. You will find steps to make these
configurations in Sympa reference manual. Some choices must be done during the setup or
later when upgrading the service :

• Choice of the e-mail agent (sendmail, exim, easy-sendmail, postfix, qmail) ;
• Choice of a RDBMS (MySQL, Sybase, Oracle, PosgreSQL) ;
• Choice of an antivirus software (MacAfee/Uvscan, Fsecure/fsav, Sophos, AVP, Trend

Micro/VirusWall) ;
• Choice of a HTTP server (Apache, Roxen) ;
• Choice of a binary setup (.rpm, .deb) or from sources. ;
• One server or distribution on several computer.

16 Integrating Sympa with other software

16.1 Share the web authentication

Sympa allows you to unify your authentication system with your other web software. It uses a
HTTP cookie to carry authentication data ; however this cookie doesn’t have any idea of
privilege.

16.1.1 Use the authentication system of Sympa

In this case, you will re-use Sympa’s login functions, logout and password reminder. You can
integrate a login form in your software, the CGI called remain wwsympa.fcgi. Your duty is to
use Sympa’s HTTP authentication cookie (check, e-mail address extraction).

In order that wwsympa.fcgi redirects users in a transparent way to your software, add
/referer to the end of a wwsympa’s called URL.
Example :
Page of Login

16.1.2 Sympa recognizes your authentication

Your software manages the authentication system, but puts a Sympa cookie in order to be
recognized by it. The software must share a « secret » with Sympa (cookie parameter in
sympa.conf) used to generate the HTTP cookies. In this case, Sympa will recognize your
users as identified. Example of this type of integration : Rearsite.

16.2 Data share

 37

http://www.sympa.org/
http://listes.cru.fr/rs/fd/

16.2.1 Definition of lists by extraction from a database

By default, members of a list are subscribers, managed in the dedicated base of Sympa.
Members of the list can be the result of a request in the database (or an LDAP directory). In
this case, the lists of members are regularly updated (parameter of list ttl) by questioning
the base. Several sources of data can be defined for the same list.

Configuration extract of list :

les membres de la liste sont extraits d’une source de données externe
user_data_source include

Mise à jour des données toutes les 12h (43200 s)
ttl 43200

Définition d’une liste d’étudiants
include_sql_query
 db_type mysql
 host sqlserv.admin.univ-x.fr
 user stduser
 passwd mysecret
 db_name studentbody
 sql_query SELECT DISTINCT email FROM student
 connect_options mysql_connect_timeout=5

Data cache : currently the data cache is stored in a file DB. Future developments would makes
it possible to manage the cache in a data base (MySQL), which would give the following
advantages :
 - Enable you to define mixed lists include/subscription ;
 - Give available subscription options to everyone (included DB extraction) ;
 - Reduce the size of Sympa’s process, data being managed by MySQL.

16.2.2 Add your data to Sympa’s base

You have the possibility to extend the structure of the tables user_table and
subscriber_table in order to add fields for your private use (example : payment
mechanism for lists). Sympa will keep these fields and will even make them available in
templates and scenarios. The added fields must be declared in sympa.conf.

Fields added to the subscriber_table table are made available from within the web
interface which manages subscribers.

Extract of sympa.conf :

champs sup. dans subscriber_table
db_additional_subscriber_fields reglement_ok,duree_abo

champs sup. Dans user_table
db_additional_user_fields adresse_postale,num_rib

17 S/MIME et HTTPS

 38

The password is not the only way to authenticate. The arrival of Public Keys Infrastructures
(PKI) make it possible to set up methods which are both more reliable and practical. Sympa
uses an encryption library (OpenSSL) making it possible to use X509 certificates in the whole
software. This section aims at helping you to put these functionalities in place quickly. If you
would like to know more read the reference handbook and the article « Sympa S/MIME and
Sympa mailing lists manager »
http://listes.cru.fr/sympa/documentation/article_smime/sympasmime.html.

17.1 HTTPS

As everyone knows we distinguish two operation modes from HTTPS :

The encrypted mode without client authentication. In this case we don’t use the client’s
certificate ; the only X509 certificate to be used is the server’s. This type of setup is
particularly simple to deploy, but the service given back by the SSL layout is limited to an
encrypted exchange that no one can listen. In the case of Sympa, sensible data are of course
passwords and cookies. Such a setup consist of :

o Installing OpenSSL and mod_ssl for Apache
o Installing a server certificate

Read the very good documentation of mod_ssl (http://www.modssl.org) for these operations.
You will only have to modify the Sympa configuration : update the variable wws_url of
sympa.conf (https instead of http).

The encrypted mode with client authentication. In this case, clients provide their certificate
(automatically). Sympa has been modified in order to use data extracted from client’s
certificates which enables the removal of the authentication step. The login button of Sympa
no more appear and each page is shown with the privileges of the person identified by the e-
mail address given by his/her certificate with the authentication smime method. This result is
reached by grouping the following two points of configuration :

o The Apache server is configured to ask the client for a certificate:
SSLVerifyClient Optional or SSLVerifyClient Require ;

o StdEnvVar option of mod_ssl is defined in Apache in order to allow Sympa to
inherit environmental variables extracted from certificates : SSLOptions
+StdEnvVars.

17.2 S/MIME

Sympa can also use X509 certificates through signed and/or encrypted messages and/or
emitted by him. The goal is then to authenticate the sender of a message based on the
S/MIME signature of the message or to distribute encrypted messages.

17.2.1 Validation of S/MIME signature

Openssl being installed, you only have to fill the openssl and trusted_ca_options parameters
in sympa.conf. We of course have to ensure coherence with the trusted authorities in the
Apache context by sharing the same certificate files of with the PEM format :

An example extracted from our own sympa.conf :

 39

http://listes.cru.fr/sympa/documentation/article_smime/sympasmime.html
http://www.modssl.org/

path to OpenSSL command
openssl /usr/local/ssl/bin/openssl

directory where trusted CA certificat are stored
trusted_ca_options -CAfile /usr/local/apache/conf/ssl.crt/ca-bundle.jhgjh

Sympa can then validate signature of S/MIME messages.

17.2.2 Encrypted messages Distribution

Encrypted distribution of messages in a list is possible if an X509 certificate and an associated
private key are installed for the list. This setup can be done with the ~sympa/bin/p12topem.pl
script from a certificate and its key in the pkcs#12 format.

The welcome message of the list is then signed (by using S/MIME) which allows the
subscriber’s e-mail client to store this certificate. He/she can then send encrypted messages to
the list as he/she would for anybody else.

Sympa can encrypt a message for a user only if it has the certificate of this user in its cache. It
is required that it received at least one S/MIME signed message from each user of the lists.
Indeed Sympa keeps all the certificates extracted from signed messages received in its
~sympa/expl/X509-user-certs directory.
It is therefore advisable to require subscription command to be S/MIME signed for these lists
(use of smime authentication method in the subscribe scenario).

18 Available ressources

This article is available on www.sympa.org web site in the « documentation » section. You
will also find there reference documentation in HTML, Postscript and PDF formats. A FAQ
answers the most frequently asked questions in the support mailing lists. Eventually we
manage mailing lists about Sympa (sympa-fr, sympa-users, sympa-dev, sympa-announce and
sympa-translation). We remind you that web archives of these lists are also available.

Several companies providing commercial support on Sympa are referenced in the « technical
support » section of the web site.

Sympa’s code is managed with CVS (Concurrent Versions System). The CVS server and its
web interface give you access to the latest development version of Sympa. In a general way, it
is not reasonable to install the current CVS version, which may have not been tested at the
CRU. Web access to CVS can help you to find out about development state of a module, bug
fixes, or patches download.

 40

http://www.sympa.org/

	Overview of Sympa functionalities
	Services to users
	Services to owners and moderators of lists
	Services to list masters
	Other features of Sympa

	Overview of Sympa organization
	Data organization
	Database structure
	File structure

	The web repository
	Functionalities
	Definition and heritage of privileges

	Subscription options
	Antivirus
	Processing of bounces (non-delivery reports)
	Analysis of bounces, bounced.pl
	The bounces management interface
	Expiration of bounces
	Projects of development

	The task manager
	Virtual robots
	Internal organization of virtual robots
	Creating a virtual robot
	DNS
	Configure your SMTP engine
	Creating aliases
	Apache
	robot.conf
	The working directory
	Restart Apache, Sendmail and Sympa’s daemon
	Other configuration

	Writing your own scenarios
	Principle of scenario operations
	Available conditions in a scenario :
	Available variables in a scenario :

	Templates
	Organization
	Format
	Variables
	Conditions
	Loops
	Enclosing of files
	Escapement

	List of templates
	Examples

	LDAP support in SYMPA
	Short introduction to LDAP
	Structure of an LDAP base
	Composition of an LDAP object
	LDAP groups
	Level of protocol
	Accentuated characters
	Exchange format
	Access rights
	Unfolding of LDAP request
	LDAP search filters
	Replicates
	Usual configuration of an LDAP client
	Example of LDAP objects

	Prerequisite for LDAP support in Sympa
	Use of LDAP for authentication in wwsympa
	Authentication in wwsympa
	Authentication with LDAP
	auth.conf file
	Authentication with several LDAP servers

	wwsympa behavior with an LDAP authentication

	Lists issued from LDAP requests
	Lists of type ‘ldap_query’
	Lists of type ‘ldap_2level_query’
	Include list and Sympa’s cache
	ttl and cache of lists

	Use of ‘LDAP filters’ in scenarios
	Named Filters (NF)
	Use of Named Filters (NF) in a scenario
	Scope of these filters

	Conclusion on Sympa and LDAP

	MySQL configuration
	Setting up Perl modules
	Create the database
	Configuration of sympa.conf
	Access tools to the database
	mysql
	phpMyAdmin

	Optimizations / and load balancing
	Optimization of the distribution
	Optimization with Sendmail
	Non canonification of addresses
	Pull down timers

	MySQL optimization
	Structure of the base
	Configuration of the server

	Load balancing

	Setup of Sympa
	Integrating Sympa with other software
	Share the web authentication
	Use the authentication system of Sympa
	Sympa recognizes your authentication

	Data share
	Definition of lists by extraction from a database
	Add your data to Sympa’s base

	S/MIME et HTTPS
	HTTPS
	S/MIME
	Validation of S/MIME signature
	Encrypted messages Distribution

	Available ressources

